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Chapter One Vector Analysis

1.1 Scalars and Vectors.

A scalar is a quantity that has only magnitude. Quantities such as time, mass, distance,
temperature, entropy, electric potential and population are scalars. Symbolically, a

scalar is represented by either lower or upper case letters.

A vector is described by two quantities: a magnitude and a direction in space at any
point and for any given time. Therefore, vectors may be space and time dependent.

Vector quantities include velocity, force, displacement and electric field intensity.

Graphically, a vector is represented by directed line segment in the direction of the
vector with its length proportional to its magnitude. Symbolically, a vector is
represented by placing a bar over the letter symbol used for a given quantity, such as

A and B, or by a letter in boldface type such as 4 and B.

1.2 Vector Addition and Subtraction.

Two vectors A and B can be added (subtracted) together to give another vector C ( D);

ie,C=A +B;D

A —B= A+ (-B).

Graphically, vector addition and subtraction are obtained by either the parallelogram

rule or the head to tail rule as portrayed in Fig. 1.1 and 1.2, respectively.
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{a) i)

Fig. 1.1 Vector addition C = A + B : (a) parallelogram rule, (b) head to tail rule

B
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Fig. 1.2 Vector subtraction D = A — B: (a) parallelogram rule, (b) head-to-tail rule.

The three basic laws of algebra obeyed by any given vectors A,B and C are

summarized as follows:

Law Addition Multiplication
Commutative A+B=B+ A kA = Ak
Associative A+(B+C)=(A+B)+C k(LA)= (kL) A
Distributive k(A +B)= kA +kB

Where k and L are scalars.
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1.3 Products of Vectors

The multiplication of two vectors is called a product. two types of products based on the
result obtained from the product. The first type is the scalar product. This is a product of
two vectors which results in a scalar. The second is a vector product of two vectors,

which results in a vector.

1.3.1 The Dot Product:

The dot product of two vectors A and B , written as A. B, is defined geometrically as
the product of the magnitude of A and B and the cosine of the smaller angle between

them.

Thus:
A. B = |A||B| cos8,p
IfA = Ayax+ A, ay+A,azand B = B, ax + B, ay + B, az, then:

A.B= A,B,+A,B,+A,B,

1-A.B=B. A (Commutative Law)

2- A.(B+ C)= A.B+ A.C (Distributive Law)

4- ax.ay = ay.az =ax.az =0 andax.ax = ay.ay = az.az =1

A direct application of dot product is its use in determining the projection (or
Component) of a vector in a given direction. The projection can be scalar or vector.

Given a vector A, we define the scalar projection Ag of A along B as [see Fig. 1.3a]
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Ap = |A] cosb,p = |AllGg| cosbyp
Or AB - A.aB

The vector projection Ag of A along B is simply the scalar projection Az multiplied by a

unit vector along B; is:

Ap =Ap ap = (A.Gp) Gp

Both the scalar and vector projections of A4 are illustrated in Fig. 1.3.
A A

A-Ag

(a) (b)
Fig. 1.3 Components of A along B: (a) scalar component A ; (b) vector component Ap.

Example 5: -

Givenvectors A = 3ax +4ay+azand B = 2ay —5az.Find: (a) A. B; (b) 845 ; ()

The scalar component of 4 along B ; (d) The vector projection of A along B .
Solution:
(a) A. B = (3ax + 4ay + az).(2ay — 5az) = 3(0) + 4(2) + 1(=5) = 3

(b) |A] = VO+16+1= /26 and|B| = V0 +4+25= 29



Chapter One Vector Analysis

_ __ A.B 3
A. B = |A||B| cosf,5 = cosb,z = ATB| = T = 0.1092

0,45 = cos™1(0.1092) = 83.73°

(c) Ag=A.a A B > 0.557
C = Ap = — = = .
g 7Bl V29

_ _ _ B 0.557 (2ax — 5az)
(d) Ag = (A.ag)ag =0557ay = 0.557 = =

|BI V29
Ag = 0.207ax — 0.517az
H.W 5:
Decompose the vector A = —2ax + 3ay + 5az on to vectors parallel and

perpendicular to the vector B = ax — 2ay — 2az.
Ans.: —2ax +4ay+4az; —ay+az

1.3.2 The Cross Product:

The cross product of two vectors A and B , written as A X B, is a vector quantity whose
magnitude is the area of the parallelepiped formed by A and B (see Fig. 1.4) and is in

the direction of advanced of right-handed screw as 4 is turned in to B.

Thus: A X B = |A||B| sin@,5 an

Where an is a unit vector normal to the plane containing A and B . The direction of an
is taken as the direction of the right thumb when the fingers of the right hand rotate

from A to B as shown in Fig. 1.5a. Alternatively, the direction of an is taken as that of
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the advance of a right-handed screw as A4 is turned into B as shown in Fig. 1.5b.

IfA = Ayax+ A, ay+A,azand B = B, ax + B, ay + B, az, then:

Fig. 1.4 The cross product of A and B is a vector with magnitude equal to the area of the

parallelogram and direction as indicated.

AXB
b

()
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Fig. 1.5: Direction of A X B and an using: (a) right-hand rule, (b) right-handed screw

rule.
Notes:
1-A X B+ Bx A (it is not commutative)
AXx B=—B x A (it is anti-commutative)
2-AXx(BxC)#(AxB)xC (It is not associative)
3-AX(B+C)=AXxB+ AxC (It is distributive)
4- A x A= 0

5-ax Xay=az; ayXaz=ax; ax X az = ay

6- ax Xax =ayxXxay=azxaz =10

{a) (h)
Fig. 1.6 Cross product using cyclic permutation: (a) moving clockwise leads to positive
results: (b) moving counterclockwise leads to negative results.
Example 6: -

Points P1(1,2,3), P2(-5,2,0) and P3(2,7,-3) form a triangle in space. Calculate (a) The area

of the triangle; (b) The unit vector perpendicular to the plane containing the triangle.
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Solution:
Tp1 = ax + 2ay +3az; 7,, = —5ax+ 2ayand 7,3 = 2ax +7ay —3az
(@) Tp1p2 = Tp2 — Tp1 = —6ax —3azand 713 = Tp3 — Tpy = ax + 5ay — 6az
ax ay az
Tp1p2z X Tp1p3 = |—-6 0 =3 =(0+15)ax— (36 +3)ay + (—30 — 0)az
1 5 -6
Fplpz X Fp1p3 B 15&96 - 39&}/ - 30@2

Area of the triangle =%|Fp1p2 X fp1p3| = %\/152 + 392 + 302 = 25.72

B 51.44

(b) a, =+ = -
|Fo1pz X Tpps|

~ a, = +(0.291ax — 0.758ay — 0.583az
Example 7: -

The vertices of triangle are located at Pi(4,1,-3), P2(-2,5,4) and P3(0,1,6). Find the three

angles of the triangle.
Solution:

Tp1 = 4ax + ay —3az; 1y, = —2ax +5ay + 4az and 7,3 = ay + 6az

Let 14_ == _plpz == fpz - f

p1 = —bax +4ay +7a

B - _p2p3 - r_pz - Zax - 4C_ly + ZaZ

C == _p3p1 == T'pl - fp3 == 4C_lx - 9&2

Notethat A+ B+C =0
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A5 = |AllB| AB -12-16-14
. = cosa = 0S4 =—— =
' L 1AlIB] 101v24
. — -1 —14 — o — _ — o
0 = C0ST e = 106.52° = 6, =180 —a; = 73.48
5.6 = B|IC B.C 8+0-18
. = cosa = C0Sdy = —=————~=
? 2 BICI V2497
Yy = cos,—lJz‘_;j’g_7 =101.96° = 0, = 180 — @, = 78.04°
C.A = ICI[A| s CA —-24+0-63
. = Cos o COSUq = —— =
’ *TICIAl - vo7vIol
Y oy = cos-lw_;j% =151.52° = 0, = 180 — a; = 28.48°

Fig. 1.13 for Example 7.

Note that 8; + 0, + 8; = 180°
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H.W 6: Show that vectors A = —5ax—3ay—3az , B =ax+3ay+4az and C =
4ax —az form the sides of a triangle. Is this a right angle triangle? Calculate the area

of the triangle.
Ans.: Yes; 10.5

H.W 7: Show that points Pi(5,2,-4), P2(1,1,2) and P3(-3,0,8) all lie on a straight line.

Determine the shortest distance between the line and point P4(3,-1,0).

Ans.: 2.426

1.4 Systems of Coordinates

1.4.1 Cartesian ( Rectangular) Coordinates (x,y, z)

A point P(x,y, z) in Cartesian coordinates is located by giving its x, y and z coordinates.
Fig. 1.7a shows the points P and Q whose coordinates are (1, 2, 3) and (2,-2, 1),
respectively. Intersection of three mutually perpendicular planes defines a point in

Cartesian coordinates, and as shown in Fig. 1.7b.

Z = consl.
o F(1,2,3)

(a) (b)

Fig. 1.7 (a) The Location of point P and Q. (b) The three mutually perpendicular

planes of the Cartesian coordinate system.
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A vector A in Cartesian coordinates may be represented as:

A = Ay ax + A, ay + A, az, and shown in Fig. 1.8

where A, , A, and A, are called the components of A in the x, y and z directions

respectively; ax ,ay and az are unit vectors in the x, y and z directions, respectively.

=
l‘.
=1y

(a) (1)
Fig. 1.8 (a) Unit vectors ax, ay, and az, (b) components of A along ax, ay, and az
Any vector can be written as:

A = |A|a,,where:

|A| = \JA2 + A2+AZ  The magnitude of the vector A

_ A Ay ax+ A, ay+A,az
a, = ]
A JAZ + A2+ A2

Unit vector along the vector A.

la,| =1, a, is a vector of unity magnitude.

11
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IfA = Ayax+ A, ay+A,azand B = B, ax + B, ay + B, az, then:

+B

|

(Ay+By)ax+ (A, +By) ay + (A, + B,) az

mA —B

(Ay —By)ax+ (A, —By)ay + (A, — B,) az

Position Vector:

The position vector 7, (or radius vector) of point P(x,y,z) is as the directed distance from

the origin O to P; i. e.,

n,=0P=xax+yay+zaz

The position vector for point P is useful in defining its position in space. Point P(3,4,5),

for example, and its position vector
f, =0P = 3ax+4 ay+5az, Areshown in Fig. 1.9a.

Distance Vector:

The distance vector is the displacement from one point to another.

If two points P and Q are given by (xp,yp,2p) and (xq,yq ,Zg), the distance vector

(or separation vector) is the displacement from P to Q as shown in Fig. 1.9b; that is

12
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(a) (b)

Fig. 1.9 (a) lllustration of position vector 7, = 3 ax + 4 ay + 5 az (b) Distance vector

Tpo-

Trg =To — Tp = (X —Xp) Ax + (Yo —¥p) @y + (29 — 2zp) Gz

The distance between the points P and Q is given by:

d = |fpql| = \/(xQ —xp) + (vg = ¥p)" + (20 — 25)?

Differential Length, Area and Volume in Cartesian Coordinates:

From Fig. 1.10, we notice that:

1. Differential length is given by:

dL = dxax +dy ay +dzaz, Vector QQuantity

dL = /dx? + dy? + dz?, Scalar Quantity

13
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2. Differential normal Area is given by:

ds = dydz ax
=dxdz ay, Vector Quantity

=dxdyaz

And illustrated in Fig. 1.11

3. Differential Volume is given by:

dV =dxdydz, Scalar Quantity

Fig. 1.10 Differential elements in Cartesian coordinates.

14
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dz dz

dy
dz

dx

Y=

dx (h', (h'

x _H#dx g

Fig. 1.11 Differential normal areas in Cartesian coordinates:

Example 1: -

Given the points M(2, -1,1) and T(-4, -2,6). Find: (a) the position vector for point M and

T; (b)aunit vector fromMtoT; (c)the distance fromMtoT.
Solution:

(Q)7y = 2ax— ay+az and " =—4 ax—2 ay+6az
(b) The vector from M to T is given by:

Fyr = Tr — Ty = (=4 —2)ax + (-2 — (-1))ay + (6 — )az = —6ax —ay + 5 az

_ Ty —6ax —ay+5az —6ax —ay+5az
S A = — = =
M rwel \J(=6)7 + (—1)2 + (5)2 V62

Ay, = —0.762 ax — 0.127 ay + 0.635 az
(c) The distance from M to T is given by:

15
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Example 2: -

Givenvectors A = ax+ 3azandB = 5ax + 2 ay — 6 az, determine:

(@)JA +B|; (b)54 —B; (c)The component of A along ay ; (d) A unit vector
along 34 + B.

Solution:

(@A +B=(ax+ 3az)+(ax+2ay—6az)=6ax+2ay—3az

#|A +B|=62+22+(-3)2=V36+4+9=7
(b)54 —B=5(ax+ 3az)— (5ax+2ay—6az)
=(Bax+ 15az) - (bax+2ay—6az)
~ 5A —B=-2ay+2laz
(c) The component of A along @y is A,=0
(dletC=34 +B=3(ax+3az)+(Gax+2ay—6az)=8ax+2ay+3az

C 8ax+2ay+3az
|C| V64 +4+9

H.W 1: Given points M(-1,2,1), N(3,-3,0) and P(-2,-3,-4), find

a. = = 0.9117 ax + 0.2279 @y + 0.3419 az

(@) Tin 5 (b) Tayn + Twp 5 (€) [Tagl 5 (d) @iy ;5 (€) [27p — 3751,

Ans.:.4ax—5ay—az;3ax—10ay—6az;245;—-0.14ax —0.7ay— 0.7 az;
15.56

16
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H.W 2: Express the unit vector directed toward the point P(1,-2,3) from an arbitrary

point on the line described by x = =3,y = 1.

4ax — 3ay + (3 —z)az
Ans.:
25+ (3 —2)?

H.W 3: An airplane has a ground speed of 350 [Km/hr] in the direction due west. If there
is a wind blowing northwest at 40 [Km/hr], calculate the true air speed and heading of

the airplane.

Ans.: 379.3 [Km/hr], 4.275° north of west.

1.4.2 Circular Cylindrical Coordinates:

The circular cylindrical coordinates system is very convenient whenever we are dealing

with problems having cylindrical symmetry.

A point P in cylindrical coordinates is represented as (p,¢,z) and is as shown in
Fig. 1.12a : p is the radius of the cylinder passing through P or the radial distance from
the z-axis; ¢ is the angle measured from the x-axis in the xy-plane; and z is the same as

in the Cartesian system. The ranges of the variables are:
0<p< 0,0¢p< 2n,—0<z<©

Intersection of three surfaces defined by p = constant, ¢ = constant and z = constant

is also a point in cylindrical coordinates, and is as shown in Fig. 1.12b

17
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pra Intersection z
of 0= Constant !
and z = Constant p = Constant cylinder
is a circle P{p,¢, 2)
P(p, 9, 2) 2 = Constant plane
?
|
|
|
|
|
- ]l > Intersection of ]
N AN | P= Constant and : y
RN I ¢ = Constant is
p | a straight line
S ¢ = Constant plane

(a) (b)

Fig. 1.12 (a) The three cylindrical coordinates; (b) Points P as intersection of three

surfaces.
A vector 4 in cylindrical coordinates can be written as

A=A a,+A;a, +A,a
p%p oY z%z a, (P1912)

Where @, , ag and a, are unit vectors in

the p—, @ — and z —directions as
)

illustrated in Fig. 1.13.

The magnitude of A4 is:

14| = \/Apz +A44° + A7

Fig. 1.13 The three unit vectors of the

Notice that the unit vectors a,, ag and ] o )
circular cylindrical coordinate system

18
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a, are mutually perpendicular because our coordinates system is orthogonal; a,
points in the direction of increasing p, @y points in the direction of increasing ¢, and

a, in the positive z-direction. Thus,

a,. a4, = Ag.0p = Az.a, =1

a,. dy = ag.A, = ay.a, =0

a, XA, = ap Xadp =0, Xa, =0

a, X dgy =0a;; ag X a,=a,; a, X a, = ay , see Fig. 1.6 with replacing
(ay,a, ,a;) with (a,,ays ,a,)

If A=A,a, +Apay + A,a, and B = B,a, + Bydy + B,a, , then:

AB=A,B,+AyBy+ A, B,

And
a, dag az
A X B = A, Ay A,
B, By B,

Differential Length, Area, and Volume in Cylindrical Coordinates:

From Fig. 1.14, we notice that:
(1) Differential length is given by:

dL = dp ap + pd¢ a¢ + dz az, Vector Quantity

dL = /dp? + (pd¢)? + dz?, Scalar Quantity

19
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(2) Differential normal area is given by:

ds =pd¢dzap

=dpdz ao, Vector Quantity
= pdp d¢ az

And illustrated in Fig. 1.15
(3) Differential volume is given by:

dV =pdpdp dz, Scalar Quantity

z+dz

piepP

Fig. 1.14 Differential elements in cylindrical coordinates

20
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s

Fig. 1.15 Differential normal areas in cylindrical coordinates:

The relationship between the variables (x, y, z) of the Cartesian coordinates and those

of the cylindrical system (p, ¢, z) are illustrated in Fig. 1.16, and given by:

1- From Cartesian To Cylindrical:

o sin g

X = p cos¢
y=p sing
Z =12 z
2- From Cylindrical To Cartesian: EE}_J’
¢ =tan™" Y Fig. 1.16 The relationship between

X

(x,y,z) and (p,¢,2).

zZ=2z

The dot product between (a, , a, ,a,) and (a,,ay ,a,) are obtained geometrically

from Fig. 1.17:

21
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dy. A, = COS ¢
Ay.ap = — c0s(90° — ¢) = —sin¢
a.a,=0

Thus:

a, = cos¢pa, — sing ay
a, = sing a, + cos¢ ay
a, = a,

a=90"—¢

Fig. 1.17 Relationship between unit
vectors of Cartesian and cylindrical

coordinates.

ay.a, = cos(90° — ¢) = sin¢
y-Ap = COS @

a,.a, =0

a, = cos¢a, + sing a,

as = —singpa, + cos¢ a,
a, =a,
ny
ay
ay &p
b a
¢ a
X
o
—a,
a =90 —
¢ ¢ . x

Thevector A = A, ax + A, ay + A, az can be transformed into cylindrical

coordinates as:

A,=Aa,=(Ayax+A, ay+A,az).a, = A, cos¢ + A, sin¢

X

¢

Aay,=(Ayax+A, ay+ A, az).a, = —A, sing + A, cos¢

A, =Aa,=(Ayax+ A, ay+A,az).a, = 4,
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The vector A = Aya, + Apagy + A,a, can be transformed into Cartesian coordinates as:

Ay =A.a, = (A,a, + Apay + A,a,).a, = A, cosd — Ay sing

Q|

y = (Apap + Apay + Azaz).&y =A,sin¢g + Ay cos ¢

Ql

o
<

Il

o

A, =Aa, =(A,a, +Agay + A,a,).a, = 4,

Example 8: -

(a) Transform the vector B = yax — xay + zaz into cylindrical coordinates.
(b) Express the vector filed S = cos ¢ a, + sin ¢ ay in Cartesian coordinates.

(c) Find at P(1, 2, -2) the vector projection of B in the direction of S.
Solution:
(a) B, = B.a, = (yax — xay + zaz).a, =y cos¢ —x sin¢
v x=pcos¢p andy = p sing
B, =p sin¢ cos¢ —p cos¢p singp =0
By = E.(,—l(p = (yax — xay + zaz).as = —y sin¢ — x cos ¢
~ By =—psin®¢ —pcos*¢p =—p
B, =B.a, = (yax — xay + zaz).a, = z
~ B=—p ag + z a, incylindrical coordinates
(b) Sy = S.d@, = (cos¢p a, +sing ay).a, = cos* ¢ —sin? ¢

y

Iy

X . y
e — S]nd):—:
p

X
PN

23
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S _ xZ _ yZ =x2_y2
X x2 +y2 x2 +y2 x2 +y2

S, =S8.a, = (cos¢pa, +sing ay).a, = cospsin¢ + sin ¢ cos ¢ = 2 cos ¢ sin ¢

—> x y _ 2xy
Y S+ 2 xZ+yz xE 4P

~ S

S,=S.a,=(cos¢pa,+sinpay).a, =0

2 2
X — 2x
Y _a Y _a in Cartesian Coordinates

(c) *B = yax —xay + zaz

~ B = 2ax —ay — 2az

_ x?2—y%_ 2xy
."S:xz +y2ax+x2 _I_yzay
_ 1-4_ 2D _ _ _
--S—1+4ax+ 1+ a a, = —0.6a, + 0.8a,
_ _ ___  B.S._
Bs = (B.as)as = WS
_ (2ax —ay — 2az).(—0.6a, + 0.8a,) ~ ~
B = (0,67 1 080 (-0.6a, + 0.8a,)
_ —-12-08
By =——— (-0.6a, + 0.8a,) = 1.2a, + 1.6a,

24
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H.W 8: Transform

_xyax+x2ay+yzaz . . . .
= From Cartesian to cylindrical coordinates.
x?% 4+ y?

o

Ans.: A = cos ¢pay + sin®* ¢ a,
H.W 9: Express the field £ = sin da, + cos? ¢ a, In Cartesian coordinates.

_ xya, +vy*a, +x%a
Ans.:Ezyx 2] yz z
xc+y

H.W 10: Decompose the vector A = 2@, — a, + 5a, into vectors parallel and

perpendicular to the cylinder p = 1 at point P(1,30°, 0).
Ans.: Ar = —1.866a, + 5a, and Ay = 1.232a,

1.4.3 Spherical Coordinates System:

The spherical coordinates system is most appropriate when dealing with problems
having of spherical symmetry. A point P can be represented as P(r, 8, ¢) and illustrated
in Fig. 1.18a, we notice that r is defined as the distance from the origin to point P or the
radius of sphere centered at the origin and passing through P; @ is the angle between
the z-axis and the position vector of P; ¢ is measured from the x-axis (¢ is the same as
in the cylindrical coordinates). According to these definitions, the ranges of the variables

are:

0<r< o0, 05¢p<2m

25
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Intersection of three orthogonal surfaces defined by r = constant, 8 = constant and

¢ = constant is also a point in spherical coordinates, and is shown in Fig. 1.18b.

A vector A in spherical

é = constant

0 = constant

r = constant

e

Fig. 1.18 (a) The three spherical Fig. 1.18 (b) Point P as intersection of three
coordinates. surfaces.
coordinates can be written as: %
_ B 3 _ a
A= Arar + Agag + A¢a¢
Where a,, @g , @y are unit vectors along the
r—, 08—, and ¢ — directions as illustrated in
Fig. 1.19 the magnitude of 4 is: y
14| = \/ATZ +Ag” + Ay’ A
a,
Fig. 1.19 The three unit vectors for
The unit vectors a, , ag and as are mutually spherical coordinates.

26
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orthogonal; a,- being directed along the radius or points in the direction of increasing r,

ag points in the direction of increasing 6, and a in the direction of increasing ¢. Thus,
ar. Ay = Gg.0p = Ag.0p =1

ar.Ag = Ag.Ap = Ap.ar =0

ar XA =09 XAy = Ay X Ay =0

ar X dg = Qg ; Qg X Ay = Ay ; Ay X A, = Qg , See Fig. 1.12 with replacing

(ay,ay ,a,) with (a, ,ag,ag).

If A=A,a, +Agly + Apady and B = B,a, + Bedy + Byay , then:
AB=A;B.+AgBg+ Ay By

And

ﬁ
Ql
S
Ql
©-

N

X

wo]]

[l
iDu 3> Q|
oo
[va) D
oo
<

Differential Length, Area, and Volume in Cylindrical Coordinates:

From Fig. 1.20, we notice that:
(1) Differential length is given by:

dL = dr ar + rdfab + rsinf8 d¢ ag, Vector Quantity

dL = /dr? + (rd6)% + (rsin6 d¢)?, Scalar Quantity

27
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(2) Differential normal area is given by:
ds =r?sin0do d¢ ar

=rsinfdrdg¢ ab, Vector Quantity

=rdr df a¢ i

And illustrated in Fig. 1.21

(3) Differential volume is given by:

r sin0 d¢
dV =1r?sinfdrdo de ,

Scalar Quantity

X

Fig. 1.20 Differential elements in spherical coordinates.

[ r sint d¢

o
-

..
a
a

s -2

Fig. 1.21 Differential normal areas in spherical coordinates.

The space variables (x,y,z) of the Cartesian coordinates can be related to variables

(r,0,¢) of a spherical coordinates system. From Fig. 1.22, it is easy to notice that:

28
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1- From Cartesian To Spherical:
X =71 sinf cos ¢
y =71 sinf@sin¢
Z =1 cos@ z
}
2- From Spherical To Cartesian: p=rsin @
r=+x2+y2+z2 P(x,3.2)=P(r, 6, &) = Plp. b, 2)
z=rcos f j
9 = tan1 Y T / ~
Z ?
H ~
_\ .
1Y '
¢ =tan"t= ,L ¥
X 3 p ‘ X = pcos ¢
y=psing

‘ Fig. 1.22 Relationships between space variables
(x,y,z) and (r,0,9).
The dot product between (ay,a, ,a,) and (a,,dqy,as) are obtained geometrically

from Fig. 1.25:

Oy Ay = dy.(cos(90 — )@, + cosOa,) = @,.(sinf a, + cos 6 @,) = sin 6 cos ¢
Ay. Qg = Ay (cos oa, — cos(90 —0) C_lz) = dy.(cosOa, —sinf a,) = cos6 cos ¢
Ay.Ap = —sing

ay.a, = ay.(sinfa, + cos8a,) = sinfsin¢

ay.dg = Qy. (cos@ a, — sineaz) = cos @ sin ¢

29



Chapter One Vector Analysis

dy.Ayp = COS¢

a,.a, = d,. (sin@ a, + cos6 C_lz) = cos 6

a,.dg = a,. (cos@ a, — sin Hc_zz) = —sin6
'Y _ + 7z —
Ay a;
ayp a, —ag a,
b a Ble
¢ _ B _
" a, 2 a,
—ay ag
o 9 o
a=90"—¢ =90 —#6
¢ , .
> -0

Fig. 1.25 Relationship between the unit vectors of three coordinate systems.

The vector A = A, ax+ A, ay+A,az can be transformed into spherical

coordinates as:

A, =Aa,=(Ayax+A, ay+A,az).a, = Aysinfcos¢ + A, sinfsin¢ + 4, cos 0

e

o =Aag=(Arax+A, ay+A,az).ay = AycosOcos¢ + A, cosfsing — A, sin
Ap =A.ay=(A,ax+ A, ay+ A, az).dy = —A, sing + A, cos ¢

The vector A = Aya, + Apagy + A,a, can be transformed into Cartesian coordinates as:

A, = A

Ql

v = (Arc_lr + Agag + A¢,c_l¢).c_1x = A,sinf cos ¢ + Ag cos cosp — Ay sing

A

y =A.a, = (A,a, + Agg + Apay).a@, = A, sin@sin¢ + Ag cos 0 sin¢g + Ag cos ¢
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A, =A.a, = (Aya, + Agag + Apay).a, = A, cos6 — Agsin 6

Example 9: -

A vector field is given by:

D= VXt t Yzt [(x —y)a, + (x +y)a, ]

N

Express this field in spherical coordinates.

Solution:

r=x2+y?+ 22, p =1rsinf =./x? + y?

x =71 sinfcos¢ , y=rsinfsing

~ D= [(r sin@ cos ¢ —r sin @ sin p)a, + (r sin@ cos ¢ + r sin G sin qb)&y]

7 sin@
~ D =r|(cos ¢ — sinp)a, + (cos ¢ + sin ¢p)a, |
D, =D.a, = r[(cos ¢ — sing)a, + (cos ¢ + sinp)a,|. a,

= r[(cos ¢ — sin ) sin 6 cos ¢ + (cos ¢ + sin ¢) sin @ sin ¢]

= rsin @ [cos? ¢ — sin ¢ cos ¢ + cos ¢ sin ¢ + sin® ¢p] = rsin b
~ D, =7siné
Dy = D.ag = r[(cos ¢ —sing)a, + (cos ¢ + sinP)a, | ag

= r[(cos ¢ — sin ¢) cos 8 cos ¢ + (cos ¢ + sin ¢) cos O sin @]

=1 cos 0 [cos? ¢ — sin ¢ cos ¢ + cos ¢ sin ¢ + sin? ¢p] = rcos @
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~ Dg =71cosf
Dy =D.ay =r[(cos¢ —sing)a, + (cos ¢ + sinp)a,|.a,
= r[—(cos¢ — sin¢) sin p + (cos ¢ + sin ¢p) cos @]
= r[—cos¢p sin¢p + sin® ¢ + cos? ¢ + singp cosPp] =71
~ Dy =1
~ D =rsin@a, +rcosfag+ray
Example 10: -

Given vectors A = 2a, — @, + 5@, and B = 44, , find the angle between A and B at

P(1, 15°, 50°).

Solution:

B, = B.a, = 4dy.a, = 4 cos0 cos ¢}

B, = B.a, = 4Gy.a, = 4 cosfsin¢

B, =B.a, = 4ay.a, = —4 sin 0

~B =4 cosfcos¢a,+ 4 cosOsinga, —4 sinf a,
At P(1, 15°, 50°),

B = 2.4835a, + 2.9597a, — 1.0352 a,

A.B = (2a,—a,+ 5a,).(2.4835a, + 2.9597a, — 1.0352 a,) = —3.1687
|A| = /22 + 12452 = 54772 and |B| = 4
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+w A.B = |A||B] cos 8,5

oot [T3A6B7

|A||B| -8 5.4772*4]_‘:0S [-0.1446]
© 0,5 = 98.31°
Example 11: -

A spherical region is defined by:
1<r<315<6< 60°,and10° < ¢ <80°

Find the volume V.

Solution:
60° 3
ﬂjdv—f j f r2sin@dr df d¢ = J (—) sin@ do d¢
$=10°JO=15° Jr=1 $=10°Jo=
80° 80° 60° 80°
j j —31n9 do d¢ = ?(—cos 0),c. dop = 4.038] do
$=10° /0= $=10° $=10°

80°

A
= 4.038 (), = 4.038 (80 — 10) * - = 4.9333 Unit’

Example 12: -

Find the area of the surface defined by:

6 = 45°, 3<r<5 and 0.Ir<¢p<m
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Solution:
T 5 T 5
S=ffds= f f(dr)(rsin@ deo) = f frsin45°drdqb:
S ¢$=0.1r r=3 ¢$=0.1r r=3
_ (- 5( )n _ 1 (25_9)(09 ) = 15.9943 Unit?
_ﬁ23¢0.1n_\/§ > 9r) = 1o. nl

H.W 11: Find the angle between vector A = a, + 3a, + 2a, and the sphere r = 1 at
the point P(1,20°, 30°).
Ans.: 45°93

H.W 12: Prove that the field A = sin 8 @, in Cartesian coordinates is given by:
xz@, + yza, — (x* + y*)a,

A=
x?% + y?+2z2

H.W 13: Obtain the expression for the volume of a sphere of radius a [m] from the

differential volume.

4
Ans.: V = Ena3

H.W 14: Use the spherical coordinates system to find the area of the stripa <0 < f8
on the spherical shell of radius a [m] (Figure below). What results when a = 0,
and f = m.

Ans.: 2ma® (cos a — cos ) and 4ma?
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